Твердые вещества нерастворимые в воде. Равновесия при растворении. Вопросы и задания

Растворы играют очень важную роль в природе, науке и технике. Вода, столь широко распространённая в природе, всегда содержит растворённые вещества. В пресной воде рек и озёр их мало, в то время как в морской воде содержится около 3,5% растворённых солей.

В первичном океане (во время появления жизни на Земле) массовая доля солей, по предположениям, была низка, около 1%.

«Именно в этом растворе впервые развились живые организмы, и из этого раствора они получили ионы и молекулы, необходимые для их роста и жизни... С течением времени живые организмы развивались и изменялись, что позволило им покинуть водную среду и перейти на сушу и затем подняться в воздух. Они приобрели эту способность, сохранив в своих организмах водный раствор в виде жидкостей, содержащих необходимый запас ионов и молекул» - вот так оценивает роль растворов в возникновении и развитии жизни на Земле известный американский химик, лауреат Нобелевской премии Лайнус Полинг. Внутри нас, в каждой нашей клеточке - напоминание о первичном океане, в котором зародилась жизнь, - водном растворе, обеспечивающем саму жизнь.

В каждом живом организме бесконечно течёт по сосудам - артериям, венам и капиллярам - волшебный раствор, составляющий основу крови, массовая доля солей в нём такая же, как в первичном океане, - 0,9%. Сложные физико-химические процессы, происходящие в организмах человека и животных, также протекают в растворах. Усвоение пищи связано с переводом питательных веществ в раствор. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Многие технологические процессы в химической и других отраслях промышленности, например получение соды, удобрений, кислот, металлов, бумаги, протекают в растворах. Изучение свойств растворов занимает очень важное место в современной науке. Так что же такое раствор?

Отличие раствора от других смесей в том, что частицы составных частей распределяются в нём равномерно, и в любом микрообъёме такой смеси состав одинаков.

Поэтому под растворами понимали однородные смеси, состоящие из двух или более однородных частей. Это представление исходило из физической теории растворов.

Сторонники физической теории растворов, которую развивали Вант-Гофф, Аррениус и Оствальд, считали, что процесс растворения является результатом диффузии, т. е. проникновения растворённого вещества в промежутки между молекулами воды.

В противоположность представлениям физической теории растворов Д. И. Менделеев и сторонники химической теории растворов доказывали, что растворение является результатом химического взаимодействия растворённого вещества с молекулами воды. Поэтому правильнее (точнее) определять раствор как однородную систему, состоящую из частиц растворённого вещества, растворителя и продуктов их взаимодействия.

В результате химического взаимодействия растворённого вещества с водой образуются соединения - гидраты. О химическом взаимодействии говорят такие признаки химических реакций, как тепловые явления при растворении. Например, вспомните, что растворение серной кислоты в воде протекает с выделением такого большого количества теплоты, что раствор может закипеть, а потому льют кислоту в воду (а не наоборот).

Растворение других веществ, например хлорида натрия, нитрата аммония, сопровождается поглощением теплоты.

М. В. Ломоносов установил, что растворы замерзают при более низкой температуре, чем растворитель. В 1764 г. он писал: «Морозы солёного рассолу не могут в лёд превратить удобно, как одолевают пресного».

Гидраты - это непрочные соединения веществ с водой, существующие в растворе. Косвенным доказательством гидратации является существование твёрдых кристаллогидратов - солей, в состав которых входит вода. Её в этом случае называют кристаллизационной. Например, к кристаллогидратам относится хорошо известная соль голубого цвета - медный купорос CuSО 4 5Н 2 О. Безводный сульфат меди (II) - кристаллы белого цвета. Изменение цвета сульфата меди (II) на голубой при растворении его в воде и существование голубых кристаллов медного купороса является ещё одним доказательством гидратной теории Д. И. Менделеева.

В настоящее время принята теория, которая объединяет обе точки зрения, - физико-химическая теория растворов. Её предсказывал ещё в 1906 г. Д. И. Менделеев в своём замечательном учебнике «Основы химии»: «Две указанные стороны растворения и гипотезы, до сих пор приложенные к рассмотрению растворов, хотя имеют отчасти различные исходные точки, но без всякого сомнения, по всей вероятности, приведут к общей теории растворов, потому что одни общие законы управляют как физическими, так и химическими явлениями».

Растворимость веществ в воде зависит от температуры. Как правило, растворимость твёрдых веществ в воде увеличивается с повышением температуры (рис. 126), а растворимость газов - уменьшается, поэтому воду можно почти полностью освободить от растворённых в ней газов кипячением.

Рис. 126.
Растворимость веществ в зависимости от температуры

Если растворять в воде хлорид калия КСl, применяющийся как удобрение, то при комнатной температуре (20 °С) может раствориться только 34,4 г соли в 100 г воды; сколько бы ни перемешивали раствор с остатком нерастворившейся соли, больше соли не растворится - раствор будет насыщен этой солью при данной температуре.

Если же при этой температуре в 100 г воды растворить хлорида калия меньше чем 34,4 г, то раствор будет ненасыщенным.

Из некоторых веществ сравнительно легко получить пересыщенные растворы. К ним относятся, например, кристаллогидраты - глауберова соль (Na 2 SO 4 10Н 2 O) и медный купорос (CuSO 4 5Н 2 O).

Пересыщенные растворы готовят так. Приготавливают насыщенный раствор соли при высокой температуре, например при температуре кипения. Избыток соли отфильтровывают, накрывают колбу с горячим фильтратом ватой и осторожно, избегая сотрясений, медленно охлаждают при комнатной температуре. Приготовленный таким образом раствор, предохраняемый от толчков и попадания пыли, может храниться довольно долго. Но стоит только в такой пересыщенный раствор внести стеклянную палочку, на кончике которой имеется несколько крупинок этой соли, как немедленно начнётся её кристаллизация из раствора (рис. 127).

Рис. 127.
Мгновенная кристаллизация вещества из пересыщенного раствора

Глауберова соль широко используется в качестве сырья на химических заводах. Добывают её зимой в заливе Кара-Богаз-Гол, который сравнительно изолирован от Каспийского моря. Летом из-за высокой скорости испарения воды залив заполняется сильно концентрированным раствором соли. Зимой, в связи с понижением температуры, растворимость её уменьшается и соль кристаллизуется, что и лежит в основе её добычи. Летом кристаллы соли растворяются, и добыча её прекращается.

В самом солёном из морей мира - Мёртвом море - концентрация солей так велика, что на любом помещённом в воду этого моря предмете нарастают причудливые кристаллы (рис. 128).

Рис. 128.
В воде Мёртвого моря из растворённых в ней солей вырастают красивые причудливые кристаллы

При работе с веществами важно знать их растворимость в воде. Вещество считают хорошо растворимым, если при комнатной температуре в 100 г воды растворяется больше 1 г этого вещества. Если при таких условиях растворяется меньше 1 г вещества в 100 г воды, то такое вещество считается малорастворимым. К практически нерастворимым веществам относятся такие, растворимость которых меньше 0,01 г в 100 г воды (табл. 9).

Таблица 9
Растворимость некоторых солей в воде при 20 °С



Совершенно нерастворимых веществ в природе не существует. Например, даже атомы серебра чуть-чуть переходят в раствор из изделий, помещённых в воду. Как известно, раствор серебра в воде убивает микробов.

Ключевые слова и словосочетания

  1. Растворы.
  2. Физическая и химическая теории растворов.
  3. Тепловые явления при растворении.
  4. Гидраты и кристаллогидраты; кристаллизационная вода.
  5. Насыщенные, ненасыщенные и пересыщенные растворы.
  6. Хорошо растворимые, малорастворимые и практически нерастворимые вещества.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. Почему в горячем чае кусочек сахара растворяется быстрее, чем в холодном?
  2. Приведите примеры хорошо растворимых, малорастворимых и практически нерастворимых в воде веществ различных классов, пользуясь таблицей растворимости.
  3. Почему аквариумы нельзя заполнять быстро охлаждённой прокипячённой водой (она должна постоять несколько дней)?
  4. Почему ранки, промытые водой, в которую были помещены серебряные изделия, заживают быстрее?
  5. Пользуясь рисунком 126, определите массовую долю хлорида калия, содержащегося в насыщенном растворе при 20 °С.
  6. Может ли разбавленный раствор быть одновременно и насыщенным?
  7. К 500 г насыщенного при 20 °С раствора сульфата магния (см. рис. 126) прилили достаточный для проведения реакции объём раствора хлорида бария. Найдите массу выпавшего осадка.

РАСТВОРИМОСТЬЮ называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях является его содержание в насыщенном растворе. Если в 100 г воды растворяется более 10 г вещества, то такое вещество называют хорошо растворимым . Если растворяется менее 1 г вещества – вещество малорастворимо . Наконец, вещество считают практически нерастворимым , если в раствор переходит менее 0,01 г вещества. Абсолютно нерастворимых веществ не бывает. Даже когда мы наливаем воду в стеклянный сосуд, очень небольшая часть молекул стекла неизбежно переходит в раствор.

Растворимость, выраженная при помощи массы вещества, которое может раствориться в 100 г воды при данной температуре, называют также коэффициентом растворимости .

Растворимость некоторых веществ в воде при комнатной температуре.

Растворимость большинства (но не всех!) твердых веществ с увеличением температуры увеличивается, а растворимость газов, наоборот, уменьшается. Это связано прежде всего с тем, что молекулы газов при тепловом движении способны покидать раствор гораздо легче, чем молекулы твердых веществ.

Если измерять растворимость веществ при разных температурах, то обнаружится, что одни вещества заметно меняют свою растворимость в зависимости от температуры, другие – не очень сильно

При растворение тверд тел в воде объем системы обычно изменяется незначительно.Поэтому растворимость веществ, находящихся в тверд состоянии, практически не зависит от давления.

Жидкости так же могут растворятся жидкостях . Некоторые из них неограниченно растворимы одна в другой, т.е смешиваются друг с другом в любых пропорциях, как например, спирт и вода, другие –взаимно растворяются лишь до известного предела. Так если взболтать диэтиловый эфир с водой то образуется два слоя: верхний представляет собой насыщенный раствор воды в эфире, а нижний – насыщенный раствор эфира в воде. В большинстве подобных случаев с повышением температуры взаимная растворимость жидкостей увеличивается до тех пор, пока не будет достигнута температура, при которой обе жидкости смешиваются в любых пропорциях.

Растворение газов в воде представляет собой экзотермический процесс. Поэтому растворимость газов с повышением температуры уменьшается. Если оставить в теплом помещении стакан с холодной водой, то внутренние стенки его покрываются пузырьками газа-это воздух, который был растворен в воде, выделяется из нее вследствие нагревания. Кипячением можно удалить из воды весь растворенный в ней воздух.

В обычной неассоциированной жидкости, например в такой, как бензин, молекулы свободного скользят одна вокруг другой. В воде же они скорее катятся, чем скользят. Молекулы воды, как известно, соединены между собой водородными связями, поэтому прежде чем произойдет какое-либо смещение, нужно разорвать хотя бы одну из этих связей. Эта особенность и определяет вязкость воды.

Диэлектрической постоянной воды называется ее способность нейтрализовать притяжение, существующее между электрическими зарядами. Растворение твердых веществ в воде - сложный процесс, который обусловливается взаимодействием частиц растворенного вещества и частиц воды.

При изучении строения веществ с помощью рентгеновских лучей было установлено, что большинство твердых тел имеет кристаллическое строение, т. е. частицы вещества расположены в пространстве в определенном порядке. Частицы одних веществ расположены так, будто бы они находятся в углах крошечного куба, частицы других - в углах, центре и в середине сторон тетраэдра, призмы, пирамиды и пр. Каждая из этих форм является мельчайшей ячейкой более крупных кристаллов аналогичной формы. У одних веществ в узлах их кристаллической решетки находятся молекулы (у большинства органических соединений), у других (например, у неорганических солей) - ионы, т. е. частицы, состоящие из одного или нескольких атомов, имеющих положительные или отрицательные заряды. Силами, удерживающими ионы в определенном, ориентированном в пространстве порядке кристаллической решетки, являются силы электростатического притяжения разноименно заряженных ионов, составляющих кристаллическую решетку.

Если, например, растворить в воде хлористый натрий, то положительно заряженные ионы натрия и отрицательно заряженные ионы хлора будут отталкиваться друг от друга.

Это отталкивание происходит потому, что у воды высокая диэлектрическая постоянная, т. е. выше, чем у любой другой жидкости. Она уменьшает силу взаимного притяжения между противоположно заряженными ионами в 100 раз. Причину сильно нейтрализующего действия воды нужно искать в расположении ее молекул. Водородный атом в них не делит поровну свой электрон с тем атомом кислорода, к которому он прикреплен. Этот электрон всегда ближе к кислороду, чем к водороду. Поэтому водородные атомы заряжены положительно, а кислородные - отрицательно.

Когда какое-либо вещество, растворяясь, распадается на ионы, кислородные атомы притягиваются к положительным ионам, а водородные - к отрицательным. Молекулы воды, окружающие положительный ион, направляют к нему свои кислородные атомы, а молекулы, которые окружают отрицательный ион, устремляются к нему своими атомами водорода. Таким образом молекулы воды образуют как бы решетку, которая отделяет ионы друг от друга и нейтрализует их притяжение (рис. 12). Чтобы оторвать друг от друга ионы, находящиеся в кристаллической решетке, и перевести их в раствор, необходимо преодолеть силу притяжения этой решетки. При растворении солей такой силой является притяжение ионов решетки молекулами воды, характеризуемое так называемой энергией гидратации. Если при этом энергия гидратации по сравнению с энергией кристаллической решетки будет достаточно велика, то ионы будут отрываться от последней и перейдут в раствор.

Взаимосвязь между молекулами воды и ионами, оторванными от решетки, в растворе не только не ослабевает, а становится еще теснее.

Как уже отмечалось, в растворе ионы окружаются и разобщаются молекулами воды, которые, ориентируясь на них своими противоположными по заряду частями, образуют так называемую гидратную оболочку (рис. 13). Величина этой оболочки различна у разных ионов и зависит от заряда иона, его размера и, кроме того, от концентрации ионов в растворе.

В продолжение нескольких лет физико-химики изучали воду в основном как растворитель электролитов. В результате получено много сведений об электролитах, но очень мало о самой воде. Как ни странно, но только в последние годы появились работы, посвященные изучению отношения воды к веществам, которые в ней практически не растворяются.

Наблюдалось немало поразительных явлений. Например, однажды труба, по которой шел природный газ при t = 19°С, оказалась забитой, мокрым снегом с водой. Стало ясным, что дело здесь не в температуре, а в других свойствах воды. Возник ряд вопросов: почему вода замерзла при столь высокой температуре, как вода могла соединиться с веществами, которые в ней нерастворимы.

Эта тайна еще не была раскрыта, когда обнаружилось, что даже такие благородные газы, как аргон и ксенон, которые не вступают ни в какие химические реакции, могут связываться с водой, образуя некоторое подобие соединений.

Рис. 13. Разъединение ионов Na + и С1 - полярными молекулами воды, образующими вокруг них гидратную оболочку.

Интересные результаты по растворимости в воде метана были получены в Иллинойсе. Молекулы метана не образуют ионов в воде и не воспринимают водородных связей; притяжение между ними и молекулами воды очень слабое. Однако метан все же, хотя и плохо, растворяется в воде, и его диссоциированные молекулы образуют с ней соединения - гидраты, в которых несколько молекул воды присоединены к одной молекуле метана. При этой реакции высвобождается в 10 раз больше тепла, чем при растворении метана в гексане (метан растворяется в гексане лучше, чем в воде).

Факт растворения метана в воде представляет большой интерес. Ведь по объему молекула метана вдвое больше молекулы воды. Чтобы метан растворился в воде, между ее молекулами должны образоваться довольно большие «дырки». Для этого требуется значительная затрата энергии, большая чем для испарения воды (примерно 10 000 калорий на каждый моль). Откуда же появляется столько энергии? Силы притяжения между молекулами метана и воды слишком слабы, они не могут дать столько энергии. Поэтому существует другая возможность: структура поды изменяется в присутствии метана. Предположим, что молекула растворенного метана окружена оболочкой из 10-20 молекул воды. При образовании таких ассоциаций молекул выделяется теплота. В пространстве, занятом молекулой метана, исчезают силы взаимного притяжения между молекулами воды, а значит, и внутреннее давление. В таких условиях, как мы видели, вода замерзает при температуре выше нуля.

Вот почему молекулы, находящиеся в промежутке между метаном и водой, могут кристаллизоваться, что и произошло в описанном выше случае. Замороженные гидраты могут поглощаться раствором и выделяться из него. Эта теория известна как теория айсбергов. Практически, как показывают исследования, все непроводящие вещества, которые подвергались испытанию, образуют устойчивые кристаллические гидраты. В то же время у электролитов такая тенденция выражена слабо. Все это ведет к совершенно новому пониманию растворимости.

Считалось, что растворение электролитов происходит в результате действия сил притяжения. Теперь же доказано, что растворение неэлектролитов происходит не благодаря силам притяжения между этими веществами и водой, а в результате недостаточного притяжения между ними. Вещества, не распадающиеся на ионы, соединяются с водой, так как они устраняют внутреннее давление и тем самым способствуют появлению кристаллических образований.

Чтобы лучше понять образование таких гидратов, целесообразно рассмотреть их молекулярную структуру.

Доказано, что образующиеся гидраты имеют кубическую структуру (решетку) в отличие от гексагональной структуры льда. Дальнейшие работы исследователей показали что гидрат может иметь две кубические решетки: в одной из них промежутки между молекулами равны 12, в другой - 17 А. В меньшей решетке 46 молекул воды, в большей 136. Дырки молекул газа в меньшей решетке имеют 12-14 граней, а в большей - 12-16, к тому же они разнятся по своим размерам и заполняются молекулами различной величины, причем могут быть заполнены не все дырки. Такая модель с большой степенью точности объясняет действительное строение гидратов.

Роль таких гидратов в жизненных процессах трудно переоценить. Эти процессы происходят в основном в промежутках между молекулами воды и протеина. Вода при этом имеет сильную тенденцию к кристаллизации, так как в протеиновой молекуле содержится много неионных, или неполярных, групп. Всякий такой гидрат образуется при меньшей плотности, чем лед, поэтому его образование может вести к значительному разрушительному расширению.

Итак, вода - это своеобразное и сложное вещество с определенными и разнообразными химическими свойствами. Она имеет стройную и в то же время меняющуюся физическую структуру.

Развитие всей живой и в значительной части неживой природы неразрывно связано с характерными особенностями воды.

Одни вещества лучше растворяются в том или ином растворителе, другие хуже. Считается, что абсолютно нерастворимых веществ нет. Каждое вещество способно к растворению, пусть даже в некоторых случаях и в очень незначительных количествах (например, ртуть в воде, бензол в воде).

К сожалению, до настоящего времени, нет теории, с помощью которой можно было бы предсказать и вычислить растворимость любого вещества в соответствующем растворителе. Обусловлено это сложностью и многообразием взаимодействия компонентов раствора между собой и отсутствием общей теории растворов (особенно концентрированных). В связи с этим необходимые данные по растворимости веществ получают, как правило, опытным путем.

Количественно способность вещества к растворению характеризуется чаще всего растворимостью иликоэффициентом растворимости (S ).

Растворимость (S ) показывает сколько граммов вещества может максимально раствориться при данных условиях (температуре, давлении) в 100 г растворителя с образованием насыщенного раствора.

При необходимости коэффициент растворимости определяется и для другого количества растворителя (например, для 1000 г, 100 см 3 , 1000 см 3 и т.д.).

По растворимости все вещества в зависимости от своей природы делятся на 3 группы: 1) хорошо растворимые; 2) мало растворимые; 3) плохо растворимые или нерастворимые.

Коэффициент растворимости для веществ первой группы больше 1 г (на 100 г растворителя), для веществ второй группы лежит в интервале 0,01 – 1,0 г и для веществ третьей группы S< 0,01 г.

На растворимость веществ оказывают влияние многие факторы, главными из которых являются природа растворителя и растворяемого вещества, температура, давление, наличие в растворе других веществ (особенно электролитов).

Влияние природы веществ на растворимость

Установлено опытным путем, что в растворителе, молекулы которого полярны, лучше всего растворяются вещества, образованные ионными или ковалентными полярными связями. А в растворителе, молекулы которого неполярны, лучше растворяются вещества, образованные слабополярными или неполярными ковалентными связями. По другому эту выявленную закономерность можно сформулировать так: «Подобное растворяется в подобном».

Растворимость веществ во многом обуславливается силой и характером их взаимодействия с молекулами растворителя. Чем сильнее выражено это взаимодействие, тем больше растворимость и наоборот.

Известно, что силы, действующие между неполярными и слабополярными молекулами, невелики и неспецифичны, т.е. в количественном выражении существенно не зависят от вида вещества.

Если в неполярную жидкость В ввести однотипные неполярные молекулы А, то энергия взаимодействия частиц А и В между собой не будет значительно отличаться от энергии взаимодействия между частицами А и А или частицами В и В. Поэтому подобно тому как смешиваются любые количества одного и того же вещества, с большой вероятностью будут неограниченно смешиваться друг с другом (т.е. растворяться друг в друге) и различные неполярные жидкости.

По этой же причине и молекулярные кристаллы обычно лучше растворяются в неполярных жидкостях.

Если же энергия взаимодействия молекул А и А или В и В больше чем А и В, то одинаковые молекулы каждого компонента будут предпочтительнее связываться между собой и растворимость их друг в друге понизится (табл. 6).

Полярность любого растворителя часто характеризуют значением его диэлектрической проницаемости (ε), которая легко определяется опытным путем. Чем она больше, тем более полярным является вещество.

Таблица 6. Растворимость KI(мас%) в растворителях различной полярности

Науке к технике. Вода, столь широко распространенная я природе, всегда содержит растворенные вещества. В пресной воде рек и озер их мало, в то время как в морской воде содержится около 3.6% растворенных солей.

В первичном океане (во время появления жизни на Земле) массовая доля солей, по предположениям, была низка, около 1 %.

Именно в этом растворе впервые развились живые организмы, и из ятого рнстнора они получили ноны и молекулы, необходимые дли их роста и жизни... С течением времени живые организмы риз пинались и изменялись. ЧТО позволило им покинуть водную среду и перейти на сушу и затем подняться н воздух. Они приобрели эту способность, сохранин и своих организмах водный раствор в виде жидкостей, содержащих необходимый запас ионов и молекул» - вот так оценивает роль растворов в возникновении и развитии жизни на Земле известный американский химик, лауреат Нобелевской премии Лайнус Полинг Внутри нас, в каждой вашей клеточке - воспоминание о первичном океане, в котором зародилась жизнь, - водном растворе, обеспечивающем саму жизнь.
В каждом живом организме бесконечно течет по сосудам - артериям, венам и капиллярам - волшебный раствор, составляющий основу крови, массовая доля солей в нем такая же, как в первичном океане. - 0,0%. Сложные физико-химические процессы, происходящие в организмах человека и животных, также протекают в растворах. Усвоение нищи связано с переводом питательных веществ в раствор. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Многие технологические процессы в химической и других отраслях промышленности, например получения соды, удобрений, кислот, металлов, бумаги, протекают в растворах. Изучение свойств растворов занимает очень важное место в современной науке. Так что же такое раствор?

Отличие раствора от других смесей в том. что частицы составных частей распределяются в нем равномерно, и в любом микрообъеме такой смеси состав одинаков.

Поэтому под растворами понимали однородные смеси, состоящие из двух или более однородных частей. Это представление исходило пз физической теории растворов.

Сторонники физической теории растворов, которую развивали Вант Гофф, Лррениус и Оствальд, считали, что процесс растворения является результатом диффузии , то есть проникновения, растворенного вещества в промежутки между молекулами воды.

В противоположность представлениям физической теории растворов. Д. И. Менделеев и сторонники химической теории растворов доказывали, что растворение является результатом химического взаимодействия растворенного вещества с молекулами воды. Поэтому правильнее (точнее) определять раствор как однородную систему, состоящую из частиц растворенною вещества, растворителя и продуктов их взаимодействия.

В результате химического взаимодействия растворенного вещества с водой образуются соединения гидраты. О химическом взаимодействии говорят такие признаки химических реакций, как тепловые явления при растворении. Например, вспомните, что растворение серной кислоты в воде протекает с выделением такого большого количества теплоты, что раствор может закипеть, а потому льют кислоту в воду (а не наоборот). Растворение других веществ, например хлорида натрия, нитрата аммония, сопровождается поглощением теплоты.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки